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Abstract

Background: Data mining, it is considered as knowledge discovery in data science, is the technique
for patterns discovery and other valuable data from huge sets. Due to the evolution of data storage
technology and the growth of big data, the use of data mining techniques has increased dramatically
in the last two decades. The purpose of data mining is to transform the raw data of organizations into
useful knowledge. They express the final data set and predicting the outcomes utilizing machine
learning techniques. These approaches are utilized to supply data like the fraud detection and user
performance, bottlenecks and even security problems.

Methods: In the current study, after preparing data, disease prediction is done utilizing large matrix
and data mining approaches. By investigating the new vector, it can be find out which diseases of
matrix is near to this one with new signs employing the matrix rows to classify it. The study is
descriptive-analytical approach which can be applicable in medical and engineering.

Results: In this research, we implemented data mining techniques using Python software to predict
brain and nerve diseases.

Conclusion: The technique used by Python software, the doctor enters the symptoms of the patient
and the output of the program indicates 3 diseases close to the input signs for each meter, and
ultimately all the meters are evaluated and the meter that has a weaker outcome is considred each time
it is run. The priority of each of these meters are expressed in the article and resenting the algorithm
employing the svd approach to predict diseases that decrease the disease duration.
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Introduction

Data mining analyzes databases and large
datasets to discover and extract valuable
information. Such studies and explorations can
be considered as an extension and continuity of
ancient knowledge and intertwined statistics
(1-3). The major difference lies in the scale,
scope, and diversity of fields and applications,
as well as the dimensions and sizes of today's
data, where machine learning methods related
to learning, modeling, and training are used in
computer science to discover patterns among
data, usually raw and often meaningless data
enters the system and after necessary
processing, results are extracted from the data,
which are called information. General
applications of data mining in computer
science include:

Discovering patterns among data
Approximate prediction of results

Obtaining practical information focusing on
big data

Data mining refers to a set of applicable
methods on large and complex databases to
discover hidden and interesting patterns among
data. Data mining methods are almost always
computationally expensive. The
interdisciplinary science of data mining
revolves around tools, methodologies, and
theories used to disclose existing patterns in
data and is considered a fundamental step
towards discovering knowledge. There are
various reasons why data mining has become
such an important area of study. Some of these
reasons are outlined below.[4]

1. Explosive growth of data in a wide range of
industries and universities supported by:
Storage devices becoming cheaper and
unlimited in capacity, such as cloud storage

spaces

Faster communications with higher connection

speeds

Better database management systems and

software support

2. Rapidly increasing
processing power

With such a high volume and variety of

available data, data mining methods help

extract information from data. In this regard,

Jiawei Han, a data scientist and author of the

book "Data Mining: Concepts and

Techniques," says:

computational
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"As a result, the data collected in databases
have been transformed into data tombs... The
widening gap between data and information
necessitates the systematic development of
data mining tools that can turn data tombs into
gold nuggets."

Data mining methods come in various types,
ranging from regression to complex pattern
detection methods with high computational
costs rooted in computer science. The main
goal of learning methods (data mining) is to
make predictions. However, this is not the only
goal of data mining. Data mining methods are
used in the long process of research and
product development. Therefore, the evolution
of data mining began when business data
started to be stored on computers. Data mining
allows users to navigate through data in real
time. Data mining is used in the business
community because it utilizes three mature
technologies. These technologies include:
Mass Data Collection

With powerful multi-processor computers, the
growth and increasing attention to data mining
algorithms have always raised the question
"Why data mining?". In response to this
question, it must be stated that data mining has
many applications. Thus, it is considered a
young and promising field for the current
generation. This field has managed to attract a
lot of attention to information industries and
societies. Despite the wide range of data
available, there is an absolute need to convert
such data into information and knowledge.
Therefore, humans use information and
knowledge for a wide range of applications,
from market analysis to disease diagnosis,
fraud detection, and stock price prediction. In
summary, it can be stated that the English
proverb "Necessity is the mother of invention”
applies to data mining, which is used for
automating processes and making predictions
in large databases. Questions that require
extensive analysis can now be answered using
data analysis. Targeted marketing is a prime
example of predictive marketing. Additionally,
data mining is used for targeted and optimized
advertising emails. In fact, data mining is used
to maximize returns on investment in sending
advertising emails. Another predictive issue is
bankruptcy prediction. Identifying segments of
society that may show similar reactions to an
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event is another capability of data mining. Data
mining tools are used to examine databases. It
is also useful for identifying patterns of
previously unknown data. A very good
example of pattern exploration is the analysis
of retail sales data. This task is performed to
identify unrelated products that are usually
purchased together. Moreover, there are other
pattern mining issues, such as identifying
fraudulent transactions in credit cards. In such
cases, unknown and new data patterns can
indicate the occurrence of credit card
information theft and other types of fraud.
Scientific Data

Across the globe, various communities are
collecting massive amounts of scientific data.
This scientific data needs analysis. This is
while there is always a need for more rapid
registration of new data. Data mining in various
scientific fields helps analyze data and discover
knowledge from them.

Personal and Medical Data

Data, from personal to public and from
individual to governmental, can be collected
for various purposes and analyzed. These data
are needed for different individuals and groups,
and when collected, extracting information
from them can unveil important issues. Among
personal data, one can refer to individuals'
banking transaction information or their
medical records. Data mining plays a
significant role in prevention, discovery, and
even treatment of diseases in medical data.
-Surveillance Images and Videos

With the decrease in the price of cameras and
the existence of cameras in smartphones, a
large volume of multimedia data is generated
every moment. At the same time, a large
volume of images and videos is also collected
by surveillance cameras. These data can be
used for various data analysis purposes.
-Sports Competitions

There is a vast amount of data and statistics
surrounding sports competitions that can be
collected and analyzed. Among these, one can
mention game information and player statistics.
-Digital Media

There are many reasons for the explosion of
digital data repositories. These include
affordable scanners, desktop video cameras,
and digital cameras. At the same time, large
companies such as NHL and NBA have begun

http://intjmi.com

the process of converting their collections into
digital data, highlighting the need for analyzing
massive amounts of data.

Virtual Worlds

There are numerous computer-aided design
systems for architects. These systems are used
to generate massive amounts of data.
Additionally, software engineering data can be
used as a source of data along with abundant
codes for various purposes.

Virtual Universes

Today, many applications use three-
dimensional virtual spaces. Moreover, these
spaces and the objects within them need to be
described with specific languages, such as
Virtual Reality Modeling Language.

Reports and Text Documents
Communications in many companies are based
on reports and documents with textual formats.
These documents are kept for future analysis.
On the other hand, a vast amount of data
available on the web for data mining is in the
form of unstructured text data, which grows in
volume every day.

Data mining, also known as "knowledge
discovery from data,” is the process of
extracting information and knowledge from
data in databases or data warehouses.

"Data Cleansing”; "Data Integration”; "Data
Selection”; "Data Transformation”; "Data
Mining"; "Pattern Evaluation”; "Knowledge
Presentation™.

We hope that by reading this article, you will
gain useful and effective information for future
research. The article is prepared as follows:
Section 2 explains the methods and techniques
for discovering knowledge in databases and the
concepts of data mining. It outlines the research
strategy used in these studies. Section 3 is a part
of the data related to symptoms and diseases
extracted from the Aminoff book and
specialized consultations during numerous
sessions with a neurologist. Section 4 is about
the disease detection and prediction algorithm.
Section 5 is the implementation of the code
implemented by Python software for disease
prediction. Section 6 is the conclusion.

After constructing this matrix using various
data mining methods, we focused on the
following: if a disease with specific symptoms
is identified, it is entered into the software as
input. The algorithm implemented using
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Python software generates three outputs, which
are the diseases closest to the input symptoms.
In other words, using large matrix methods and
data mining techniques after  matrix
preparation, if a disease with certain symptoms
is known, by examining a new vector, we can
identify if this new disease with new symptoms
will be closer to which diseases in the matrix
rows, respectively.

The next step is to compare different data
mining methods used for this matrix and
observe which one provides the optimal answer
or has less error. The important result of this
research is to select the best method that has the
least time complexity to obtain results. It is
noteworthy that this method can be generalized
to many other situations.

The increasing advancements in healthcare
science have led to longer life expectancy,
reduced mortality rates, and an increase in the
elderly population.

Materials and Methods

This is a descriptive-analytical and applied
research, with one of the most effective data
mining methods used in it. Multiple data
mining techniques have been employed for
disease prediction and early diagnosis.(2,3)
System Identification

Identifying the domain where data mining is to
be conducted and possessing the relevant
knowledge for this research are crucial.
Therefore, in the initial phase, consultation
with a neurologist, thorough study of the
"Clinical Neurology" book by Aminoff, as well
as research on neurological diseases to identify
influential factors in infection, treatment, and
diagnostic methods, along with preventive
measures, have been undertaken to ensure a
proper understanding of the study domain.
Data Preparation (Diseases and Symptoms)
The data used in this study is sourced from the
"Clinical Neurology” book by Aminoff,
consultations with a neurologist, and clinical
data. After consulting with the relevant
physician and utilizing clinical data from
archives, a matrix consisting of approximately
150 rows and 500 columns has been formed.
The elements of this matrix represent the j-th
sign for the i-th disease. Textual studies and
consultations with a specialized physician have
been incorporated into the design.
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The compilation of diseases and data has been
defined in a tabular format in Excel, with Table
(2), (1) serving as an example where its rows
denote diseases and its columns denote
symptoms, following the data collection
methods as described. Table (3) serves as an
example representing symptom codes, and
Table (4) serves as an example representing
disease codes. Disease diagnosis codes have
been modeled using Python programming and
data mining techniques such as Manhattan
distance, k-nearest neighbor, Pearson distance,
Minkowski distance, and cosine similarity.
Data representing diseases have been obtained
for various symptoms (matrix columns) from 1
to 150 (matrix rows).

Table 1: Symptoms (Headache) (1) The
compilation of diseases and data has been
defined in a matrix format in Excel. , where its
rows represent diseases, and the numbers
against the rows essentially represent the
columns indicating symptoms. Intensity of
symptoms from zero to ten has been assigned
based on specialized studies.

Visualizations aid us in understanding data
more  effectively. By creating visual
representations, we strive to transform
numerical data into a format that humans can
comprehend because numerical data alone may
not be helpful. It is through modeling and
analyzing the structure of this data that we can
gain a proper understanding of the reality
behind these numbers. One of the most
important visualizations is heatmaps. The goal
of a heatmap is, in fact, to create an initial
clustering and display numerical information
using colors. In the heatmap below, you can see
numerical values represented by colors in the
column and row sections. Each cell of this
visualization represents a spectrum that
corresponds to a numerical value. In the figure,
the spectrum is displayed with different colors,
with values below zero shown in red and those
above zero in blue. Zero values are displayed
in black. By viewing this heatmap, the
magnitude of each section can be observed.
The clustering section present in the heatmap
aims to cluster genes or samples. Clustering
implies that these genes or samples contain
similar information and are grouped into a
cluster. Various algorithms have been
introduced for clustering, and hierarchical
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clustering is used in heatmaps. This type of
clustering also utilizes different algorithms,
which vary depending on the distance metric
used. In this heatmap, the Euclidean distance is
employed as the distance metric.

Standard deviation (symbolized as o) is one of
the measures of dispersion that indicates how
much the data points deviate from the mean on
average (6-8). One of the main features of the
median is that the sum of the absolute
differences between various variable values
and the median is minimized.

There are several species of means in
mathematics, particularly in statistics. In the
study of the distribution of a statistical
population, the representative value around
which the measurements are distributed is
called the central value, and any numerical
measure that represents the center of a dataset
is called a measure of central tendency. Mean
and median are among the most common
measures of central tendency (5).

Modeling

Various data mining methods exist for
modeling. Therefore, in this study, modeling
was carried out in Python software using data
mining  techniques, focusing on the
development of predictive models.

Jaccard Distance

The coefficient de communaté, originally
devised by Paul Jaccard, provides a measure of
distance to indicate how closely two sets are
related. It is formally written as follows under
the name Jaccard Index or Jaccard Similarity
Coefficient for finding the similarity between
two items [9]:

similarity jgccara (i, J)
_ #users that bought both items

~ #users who bought either i or j

Where, i represents item 1 and j represents item
2.

Measuring Distance with Lp Norms

A general method for measuring distances is
through Lp norms. Therefore, in this section,
we will explore two different metrics: L1 norm,
L2 norm, and Lp norms.
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L1 Norm (Manhattan Distance)
The simplest distance metric is the Manhattan
distance, also known as the taxicab distance,
which excels in speed. The Manhattan distance
is calculated by summing the absolute
differences between the x's and the y's:
1)

|y — 22| + |y — y2l

L2 Norm:
The L2 norm, also known as the Euclidean
norm:

)

2

r I

n
2 = Z sara,i rpietro,i
i=1

Voara — pietro

1) Distance (Sara, Pietro)

Cosine Similarity
Cosine similarity is highly prevalent in text
processing and is utilized in collaborative
filtering. It disregards 1-1 metrics and is
introduced through equation (4) as follows:
(4)

X,y

cos(X,y)=r——— (1
RN
sim (i, J) @
ri.rj >u'i,u"j,u @

“Jldn], Ve

Discovering Hidden Genres (Categories)
with Matrix Factorization

Our discussion revolves around latent factors in
content data. Now, the hidden factors related to
collaborative filtering will be addressed, which
refers to behavioral data.

While many names have been discarded, | have
considered this: hidden genres are essentially
latent factors, particularly when discussing
films. It is said that these factors are hidden
because they are defined by something
calculated by an algorithm, not by humans.
They are biased towards data representing or
explaining user preferences. These biases or
factors are also hidden, as even if the data
seems data-wise and logical, it is not easy to
determine what these factors mean. As we
proceed, | will explain this. Additionally, we
will focus on something called a rating matrix.
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Before moving forward, | would like to set a
stage. We will begin with numerous
discussions about Singular Value
Decomposition (SVD) (10). It is a well-known
linear algebra method, and there are many tools
available to assist you in calculating existing
matrix factorizations. | will show you a tool
with Scikit-learn, a machine learning library
for Python.

With areal SVD, you can easily add new users.
However, calculating an SVD is quite slow,
and if you have a large dataset, it will be time-
consuming. More importantly, there are strict
requirements regarding what should be done
about empty cells in the rating matrix. To
address this issue, we will move towards Funk
SVD, which is becoming the most common
choice for usage. Adding new users is not a
simple task but it is feasible.

Finding hidden factors is a task that can be
approached in various ways. In the realm of
collaborative filtering, finding hidden factors
has primarily been done through matrix
factorization based on the rating matrix.

Data reduction can be beneficial in some cases.
The reason for reducing dimensions could be to
extract a signal from the data. For example, the
top pattern represents a scatter plot of noisy
data (disturbances), while the bottom pattern
represents the true signal - the information
present in the data. Simplifying data can
sometimes make it easier to understand hidden
information within them.

In essence, you can have the same information
for points on a line, as shown in the figure, only
points that also have noise. This same principle
applies when performing dimensionality
reduction, where you have high-dimensional
data.

Consider the data in Figure 4 as a cloud of
points that you want to project onto a lower-
dimensional space, where the distance between
objects remains the same. Points that were
farther apart before reduction remain farther
apart afterward, and close cases become closer
after reduction.

Matrix Factorization

= Creating a Factorization using SVD

One of the most common methods utilized for
matrix factorization is a technique named
Singular Value Decomposition (SVD), to
obtain elements for recommending to users,
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and to do this using factors extracted from the
rating matrix.

We want to create two matrices from the rating
matrix M so that we can use them: one
representing customer preferences and the
other containing item profiles. Using SVD, we
create three matrices: U, X, and Vt. Since we
want to end up with two matrices, we multiply
the square root of X into one of the other two
matrices, leaving two matrices. But before
doing this, we want to use an intermediate
matrix that provides us with information about
the amount of reduction needed. Figure 5
shows SVD.

Figure 5 represents a matrix that can be
decomposed into three matrices:

M: The matrix you want to decompose; in your
case, it is the rating matrix.

U: The user composition matrix.

2: The diagonal weights matrix.

V/T: The item composition matrix.

Diagonal Matrix

A diagonal matrix is one that has only zero
values.

The central diagonal matrix X contains
components sorted from largest to smallest.
These components are called singular values,
and they represent the amount of information
generated by this combination for the dataset.
A combination here refers to a column in the
user matrix U and a row in the item matrix VT
(both). Now, you can choose r combinations
and consider the rest of the diagonal as zeros.
When you consider the values outside the
central box as zeros, what remains from the
matrices is removing all the rightmost columns
in the user matrix U and all the bottom rows
from VV*, while keeping only the top r rows.
How much should we reduce (shrink) the
matrices?

We can reduce the dimensions using two cases,
and still create a plot similar to the one shown
in Figure 6. Another good reason for reducing
the matrix to two dimensions is that by
observing the weights in the sigma matrix (X),
we can obtain more information using just two
combinations.

Dealing with zeros in the rating matrix by
using imputation

However, often you will encounter situations
where only 1% of the cells in the rating matrix
have values. Something needs to be done. To
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achieve this goal, we have two common
methods:

*We can calculate the average of each element
(or user) and fill each row (or column) of this
matrix, which contains zeros, with this average.
* We normalize each row in such a way that all
components are centered around zero, so the
zeros will become the mean.

Both approaches are considred as imputation.
This solution shows you part of the way, but we
can have better performance with something
called baseline predictors, which we will
discuss soon. In the next step, we will fill the
zero cells with averages obtained (product
obtained) from the ratings.

Normalizing the ratings

Calculate the average of the movies
r_average=M[M>0.0]. mean () «—

Set zero for all inputs for NaN (not a number)
M[M==0] =np.NaN+«+

Fill all NaNs with averages M.fillna
(r_average,inplace=True)«

Adding a New User with Insertion (Folding
in New Entries)
An interesting point about the SVD method is
that we can fold in new users and items to the
system.
Expressed as a vector, it will be as follows:

Teim = (4.0,5.0,0.0,3.0,3.0,0.0)
You can compute the new row using the
formula below: (Figure 7)

Upim = 1 VX"

Where, ukim is the user vector in the reduced
space representing the new user. *r¢ is the
vector for rating the new user. YV is the
inverse of the sigma matrix. VT is the item
matrix.
To use this in Python, we have executed the
following code in a sample script:

Folding in new users
from numpy. linalg import anv
Tvim = np.array([4.0,5.0,0.0,3.0,3.0,0.0])

Ukim

= Tyim Vt_reduced.T" inv(Sigma_reduced)

Now, we can also predict ratings for the user
"kim". Similarly, we can fold in a new item
using the following formula:

inew = rr?ew il:emUZ_1
* Inew IS @ vector in the reduced space
representing the new item.
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* r new item is the rating vector of the new
item.

*3 1 is the inverse of the sigma matrix.

*-U is the user matrix.

Remember, this reduction is done to extract
topics from the data. When you add a new user
or item, these topics do not update; they are
compared with the discussions that were
previously available.

Updating SVD is often important as much as
possible. Depending on the number of new
users and items, you should perform this task
once a day or once a week. An interesting point
about folding in a new user is that if the new
user only has one rating, whether it is high or
low, it does not matter. The recommendation
list will remain exactly the same.

Performing Recommendations with SVD
There are two methods for providing
recommendations: calculating all predicted
ratings and considering the highest-rating items
that the user has not encountered before, or
iterating through each item and obtaining
similar dot products in the reduced space. The
third method can involve utilizing your new
matrices to compute collaborative filtering.
The reason for considering this as a good idea
is that matrices contain all non-zero inputs (at
least if normalized). In this compressed space,
you have a much better chance of finding
similar items or users.

I could continue writing about SVD and its
capabilities, but I would like to explore another
type of reduction method, similar to SVD but
much more efficient for computation. The SVD
method you have seen so far has several
drawbacks: first, dealing with unfilled cells in
the rating matrix is necessary, and computing
large matrices is slow. On the positive side,
adding new users when they enter is possible.
However, keep in mind that the SVD model is
static and should ideally be updated frequently.
The next matrix decomposition algorithm is
interesting, but as always, 1 will take a moment
to focus on something called baseline
predictors, which make filling in the gaps in the
matrix easier. Although they can be used as a
recommendation system, here they are used as
a method for better matrix decomposition.
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Baseline Predictors
Apart from the types of items and user
preferences, there are other aspects of items
and users that can be considered. If a movie is
generally considered good, its average rating is
likely slightly higher than the global average of
all movies, and conversely, if a movie is
considered bad, its average rating is likely
lower than the global average. If you have such
information, you can add a slightly higher
default rating to an item. However, some users
may be more important or positive compared to
others. An item that is above or below the
average can be said to be biased. The same
applies to users; you can say that users have
biases compared to the global average.
If you are able to extract these biases for items
and users, then you are in a position to provide
baseline predictors, which are much better than
using averages, as you did earlier when filling
in empty cells of the rating matrix. Using these
biases, you can create baseline predictors. A
baseline predictor is the sum of the global
average, plus the item bias, plus the user bias.
You will use the following equation:

by = u+ by + by
Where,
*by is the baseline prediction for item i for user
u.
*by is the user bias.
*b; is the item bias.
*1 is the mean of all ratings.

Estimation of Biases by Least Squares
You want to obtain biases that represent
baseline predictions close to known ratings. If
you consider the same ratings used previously,
you will ask what values should be determined
for the biases to minimize the following
relationship as much as possible.

min (r(sara,civil war) — b(sara,civilwar))2
min (T(sara,civil war) — Au_bsara - bcivilwar)2
To ensure that no one is left behind, 1 will
quickly address this task. This equation
signifies your effort to find bs that minimizes
or least squares the equation. For multiple
ratings, it can be written as follows:

min ) (- 1= by~ by)’
(wi)ek
Where,

http://intjmi.com

(u, 1) € Krepresents all the ratings you have had
so far.

A simpler method to find these biases is to
utilize the equations described in this section.
Initially, compute the bias for each user (by) by
considering the sum of differences between
user ratings and the mean, then divide it by the
number of ratings, meaning the result is the
average difference between the mean and user

ratings.
b ' E( )
= i — U
R AP

i€l,
After calculating all user biases, compute the
item bias (bi) using the same method.

1
b= ) (= b=

ueu;

The biases calculated can be used to fill in
empty spaces in the rating matrix, instead of
SVD, or in fact, most matrix factorization
algorithms, may perform better. | have
calculated the biases for test data.
While we talk about bias as static, a user can
range from a happy individual to a grumpy
elder, and biases should adjust to reflect that.
This applies to item bias adjustment over time
as well since items enter and exit fashions.
Predictions of ratings can also vary over time,
S0 you can consider your rating prediction
function as a function of time. In such cases,
you need to modify the previous equation to the
following time-dependent equation:

by;(t) = pu+ by (t) + bi(t)
Consider this especially if you have long-term
data with numerous ratings. If you want to
improve the accuracy of your recommender,
keep this in mind.
If your data spans a long period and has many
ratings, you should pay attention to the
temporal aspects. Otherwise, start with a
simpler approach and then upgrade. You can
delve into research describing how to approach
this. A good starting point is collaborative
filtering with temporal dynamics by [10-12].

Decomposition Using Funk SVD

The SVD method puts significant weight on the
rating matrix, but this is a sparse matrix (quiet,
scattered, low density), and one should not
heavily rely on the concept that the likelihood
of finding a crowded cell with a rating can be
less than 1%. Instead of using the entire matrix,
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Simon Funk proposed a method where only the
necessary things are used.

You start this method by looking at RMSE,
which is used to provide a measure of how
close you are to the known rating. By looking
at your toolbox, you will notice something
called gradient descent, which uses RMSE to
improve the solution. When you have that, you
will pay attention to using baseline predictors.
Earlier, I referred to them as a method for better
prediction compared to average rating
information. By learning all these, you will
explore the Funk SVD algorithm.

Adding Biases

In the previous section, we discussed biases.
Even though this equation may be slightly
complex, adding them is valuable.

The approach | am considering is one where the
user prefers a specific type of movie, encoded
in the user factors, while a negative (or
positive) bias is encoded in the item factors.
Now, a predicted rating is the sum of these four
components, as shown in Figure 8.

When adding them to the equation, the new
function you want to minimize is as follows:

minb,p,q Z (riu —Uu—- bu - bi - qipu)z
(u,i)EK

You perform this according to the stochastic
gradient descent approach and by considering
the derivative of the mean squared error, you
obtain these equations.

If your rating matrix is sparse, you may
encounter issues (problems) of overfitting.
Overfitting occurs as matrices U and V can
precisely calculate appropriate values for
existing ratings, but when it comes to
predicting new cases, they completely fail. One
way to address this is by introducing something
called a regularization term, which minimizes
the following relationship:

ming, z (rui —uyvy) + A(Hullz
(w,i)eEknown

+ (vl

Brute Force Recommendation (Theory,
Recommendation) Calculation

The brute force recommendation s
straightforward: determine a predicted rate for
each user and item, then sort all predictions and
return the top N. While doing this, you can also
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save all predictions for use when users visit
later.

This is a non-negligent (nonsense) method of
doing unnecessary work. Keep in mind that
doing this may require a lot of time and force
your system to perform many computations
that will never be used. You can optimize this
to some extent, but a better approach is to save
factors and biases and use them to calculate
recommendations.

Instead of using the original rating data, you
can use the factors you have calculated
yourself. This means you calculate similarities
where items are closer and in smaller
dimensions, making the task easier.

If you have already observed the factor space,
you can create user-based or item-based
recommendations. Either way, you will benefit
from the vectors created representing users and
items.

Results

Python Code Implemented on Data

After collecting the data, we implemented the
algorithm shown in the figure using Python.
The metrics show the closest similarities to our
input symptoms. When a patient visits a doctor
with specific symptoms, the doctor enters the
symptoms into the software we have
implemented, and ultimately the output will
show the three diseases closest to the
symptoms for predicting the disease to the
doctor. Further comparisons are made between
the metrics, and the worst metric, which has
weaker results compared to the others, is
determined. In the Appendix A, the program
execution is included, and the results are
presented for further information.

Running the Code and Disease Prediction

After preparing the data and implementing the
algorithm in Table 5, the execution of the code
for disease prediction is presented in Figure 1
in this section. Data mining is capable of
discovering and extracting new knowledge
from past data. The preprocessing of data and
the selection of variables also have a significant
impact on knowledge discovery. Various data
mining techniques exist for disease prediction.
In this article, five data mining algorithms were
used, which will be explained further. The
empirical results demonstrate the effectiveness
and reliability of all three methods compared
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based on sensitivity, specificity, and accuracy.
Pruning and boosting techniques were
employed to find the desired structure and
improve the accuracy and validity of the
results. The examined database in this article
focused on data mining prediction approaches
in neurological diseases and their diagnosis.
Therefore, based on the notes mentioned
regarding research gaps and the use of data
mining prediction approaches in early
detection of various diseases (medical), new
research can be initiated in this field (5, 6).

Example 1.5. As an example, we examined a
sample and entered the disease symptoms in
order, including decreased level of
consciousness, confusion (B=9), neck stiffness
(D=8), and bilateral extensor plantar response
(G=6) into the software implemented with
Python. The software outputs diseases close to
this patient's condition, and the output is shown
according to various metrics. The Jaccard
metric output indicates three diseases, namely
migraine, spinocerebellar degeneration due to
Phenytoin, and vasovagal syncope. The
Minkowski metric output indicates muscular
dystrophy diseases, Duchenne muscular
dystrophy, and facioscapulohumeral muscular
dystrophy. All output diseases are close to the
input symptoms in the domain of motor
disorders, sensory impairments, motor deficits,
and visual impairments. Our software
identified the weakest metric, which indicates
weaker results compared to other metrics, as
the Pearson metric. Additionally, using the
SVD technique, the program executes in less
time. The results were reviewed with a
neurology specialist, and the examination
outcome showed that the results are entirely
acceptable and accurate.

This graph represents the evaluation of the
target algorithm. Cross-validation technique
has been employed, with K set as 40 as
depicted in Figures 11 and 12. Cross-validation
has been performed on 40 configurations, and
accuracy has been calculated. The results are
illustrated below. Upon examining the results
of matrix factorization, | believe achieving a
service coverage of up to 95% for diseases is
excellent.

One way to look at the data is to compare the
training error with the testing error, as shown
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in the figure below. It is crucial for the lines to
have an angle less than or equal to 45 degrees,
indicating that the test error is proportional to
the training error. It is advisable to run the
experiment for a certain number of iterations,
such as 50 or 100 times, while some articles
suggest looking at RMSE for each iteration and
stopping when the change in RMSE is less than
a certain threshold. Plotting MSE as shown
below, it is a good idea to look for intersections
in the graph. The intersection is often where the
algorithm avoids overfitting to its known data
and starts to overfit excessively. A line in the
figure below represents training with 75
factors. As you can see, the testing MSE has a
small intersection at around 400 iterations.
Here we should only use 20 factors because the
test line with 20 factors has a small intersection
at around 275 iterations, so it might be a good
place to stop.

The return values of this function increase as
the items become more similar. The better
method depends on your domain and data. In
general, the relationship between similarity and
distance is as follows:

As the distance increases, similarity tends
towards zero.

As the distance tends towards zero, similarity
tends towards one.

In this section, we measure similarity using
different algorithms and compare their
accuracies with each other.

Conclusion

The aim of this research was to design an
efficient model for discovering knowledge in
predicting neurological diseases based on the
latest dataset of indicators in this field related
to public health and to provide an accurate
analysis of data mining techniques for
predicting neurological diseases. In other
words, research efforts have been made to
employ data mining techniques based on the
use of disease and symptom datasets through
business intelligence programs to provide
important results in accurate decision-making
and timely presentations (7,8). For
comprehensive  explanations and overall
conclusions, various metrics were utilized and
the algorithm was implemented using Python
software for predicting neurological diseases.
The advantages of each of these metrics have
been elaborated upon, and the SVD technique
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Tables & Figures

Table 1: Intensity of symptoms

Disease Symptoms (Headache)
Subarachnoid hemorrhage 10
Meningitis or encephalitis 9
Intracranial hypertension (encephalopathy) 9
Giant cell arteritis 9
Intracranial mass 8
Pseudotumor cerebri (idiopathic intracranial hypertension) | 9
Trigeminal neuralgia 0
Glossopharyngeal neuralgia 0
Postherpetic neuralgia 0
Hypertension 9

Table 2: Symptoms B (5) (Decreased level of consciousness, confusion)

Diseases Symptoms (Decreased level
of consciousness, confusion)

Subarachnoid hemorrhage 9

Meningitis or encephalitis 9

Intracranial hypertension (encephalopathy) 0

Giant cell arteritis 0

Intracranial mass 7

Pseudotumor cerebri (idiopathic intracranial hypertension) | 0

Trigeminal neuralgia 0

Glossopharyngeal neuralgia 0

Postherpetic neuralgia 0

Hypertension 0

Table 3: Some symptoms extracted from Aminoff’s book and consultation with a specialist
physician (4).

Code | Symptoms Code | Symptoms
A Headache G Plantar reflex (bilateral extensor or Babinski
reflex)

B Decreased level of | H Hemiparesis (paralysis of one limb or one side
consciousness (confusion) of the body)

C Vomiting I Aphasia (speech disturbance)

D Stiff neck J Visual field defects or visual changes

E High blood pressure K Herniation

F Fever L Progressive drowsiness
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Table 4: Some of the diseases extracted from Aminoff's book and consultation with a specialist
physician (4).

1) Subarachnoid hemorrhage

2) Meningitis or encephalitis

3) Hypertensive encephalopathy
4) Giant cell arteritis

5) Intracranial mass

6) Pseudotumor cerebri (Idiopathic intracranial hypertension)
7) Trigeminal neuralgia

8) Glossopharyngeal neuralgia
9) Postherpetic neuralgia

10) Hypertension

11) Atypical facial pain

12) Migraine

13) Cluster headache

14) Tension-type headache

15) Ice pick headache
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Figure 3. Check the median data and the standard deviation data and the mean data
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Figure 5: Singular Value Decomposition procedure
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Figure 6. SVD reduction to zero by setting small values in X.

New User

Figure 7. Graphs illustrating the technique of folding in (folding in new items) using SVD

Detailed Program

Obtaining the global mean, which can be done initially
by obtaining the mean of each column and then finding Subtracting the global mean from all non-zero
the mean of those means. ratings.

The mean of each row is equal to the user
bias.

Subtracting the user bias from each row, then
considering the mean of each column gives
you the item bias.
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Temporal Dynamics

Dot product between user factors and item

User bias

I

Item bias
Global mean

Figure 8. A predicted rating is a combination of these four elements.
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Figure 9. Compares the MSE test with the training MSE to indicate whether over fitting occurs or not.
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df.iloc[disease name][1:len(df)] = @
for i in range(how_many number):

index, df.iloc[disease_name][index] = [int(x) for x 4in input().split()]
recommend(df, int(disease name))

if show_type == '2°:
disease_name = input(‘Enter the Number of the disease: ')
recomsend(df, int(disease_name))

if show_type == *3°:
print(“Enter Xd Feature Values™ X (len(df.columns)))
for i in range(len(df.columns)):
df.iloc[disease name][i] = input()
recommend(df, int(disease_name))

Choose: 1: Input NoN-Zero Features From User, 2: Input Features From File, 3: Input all Features From user 1
How many non-zero Features do you have? 3

Enter two values for 3 times: First is the Feature Index (from 1 to 580) and Second is the Feature Value
29

48

76

Distance Type ( 1: Jaccard similarity, 2: Cosine similarity l1-norm, 3: Cosine similarity 12-norm): 1
Do you want to compare distances? (y (yes), n (no)): y

Jaccard similarity (top 3): [ 12 37 146] [0.125, 0.125, 0.14285714285714285)

Jaccard similarity (top 3): [ 12 37 146) [0.125, ©.125, ©.14285714285714285]

Cosine similarity 11-norm (top 3): [ © 104 103] [0.0, 0.0, 0.0]

Cosine similarity 12-norm (top 3): [ © 184 103] [0.e, 0.0, .0]

worst distance calculation is Jaccard similarity

Figure 10: Execution of Python Code for Disease Prediction and Interpretation of Results in Example
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Figure 11. Similarity check diagram using svd
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Figure 12. Similarity check diagram using data mining techniques

Appendix A: Code
from math import sqrt
import pandas as pd
from numpy import dot
from collections import Counter
from itertools import chain
from numpy import linalg
import numpy as np
from scipy.linalg import svd
def jaccard_similarity(arrl, arr2):
intersection = len(list(set(arrl).intersection(arr2)))
union = (len(set(arrl)) + len(set(arr2))) — intersection
return float(intersection) / union
def I1_norm(arr):
return sum([abs(i) for i in arr])
def 12_norm(arr):
return sqrt(sum([pow(i, 2) for i in arr]))
def cosine_similarity l1(arrl, arr2):
return dot(arrl, arr2) / (I1_norm(arrl) * 11_norm(arr2))
def cosine_similarity _12(arrl, arr2):
return dot(arrl, arr2) / (I2_norm(arrl) * 12_norm(arr2))
def recommend(df, disease_name):
distance_type = input ‘Distance Type ( 1: Jaccard similarity, 2: Cosine similarity 11-norm, 3:
Cosine similarity 12-norm): ")
do_compare = input('Do you want to compare distances? (y (yes), n (no)): ")
distance =[]
distances =[]
for i in range(df.shape[0]):
if i 1= disease_name: distance.append(jaccard_similarity(df.iloc[disease_name].values,
df.iloc[i].values))
distances.append(distance)
distance =[]
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for i in range(df.shape[0]):
if i 1= disease_name:
distance.append(cosine_similarity I1(df.iloc[disease_name].values, df.iloc[i].values))
distances.append(distance)
distance =[]
for i in range(df.shape[0]):
if i 1= disease_name:
distance.append(cosine_similarity [2(df.iloc[disease_name].values, df.iloc[i].values))
distances.append(distance)
if distance_type =="1"
print(‘Jaccard similarity (top 3): ', numpy.argsort(distances[0])[0:3], sorted(distances[0])[0:3])
if distance_type =='2"
print('Cosine  similarity  I1-norm  (top  3): ',  numpy.argsort(distances[1])[0:3],
sorted(distances[1])[0:3])
if distance_type =="'3"
print('Cosine  similarity  12-norm  (top  3): ',  numpy.argsort(distances[2])[0:3],
sorted(distances[2])[0:3])
if do_compare =="y".
print(‘Jaccard similarity (top 3): ', numpy.argsort(distances[0])[0:3], sorted(distances[0])[0:3])

print('Cosine  similarity  I1-norm  (top  3): ',  numpy.argsort(distances[1])[0:3],
sorted(distances[1])[0:3])
print('Cosine  similarity  12-norm  (top  3): ',  numpy.argsort(distances[2])[0:3],

sorted(distances[2])[0:3])
counts = Counter(chain(*map(set,
[sorted(distances[0])[0:3], sorted(distances[1])[0:3],
sorted(distances[2])[0:3]])))
common_remove = [[i for i in sublist if counts[i] == 1] for sublist in  [sorted(distances[0])[0:3],
sorted(distances[1])[0:3], sorted(distances[2])[0:3]]]
list_size =]
for i in range(len(common_remove)):
list_size.append(len(common_remove[i]))
max_size_list = list_size.index(max(list_size))
if max_size_list==0:
print(\n' + "Worst distance calculation is Jaccard similarity")
if max_size list == 1:
print(\n' + 'Worst distance calculation is Cosine similarity 11-norm’)
if max_size_list == 2:
print(\n' + 'Worst distance calculation is Cosine similarity 12-norm’)
disease_name =100
dfs = pd.read_excel('Future_Signs_final(1).xlsx', header=None)
first_row = dfs.iloc[0, 1:]
first_column = dfs.iloc[1:, O]
first_row.to_excel("features.xlsx", sheet_name='Sheetl")
first_column.to_excel("disease_names.xIsx™, sheet_name='Sheet1")
df = dfs.iloc[1:, 1:]
X=dfs.iloc[1:,1:].values
Y = X.astype(‘float64’)
# SVD
U, Sigma, Vt = svd(Y)
#print(U)
#print(Sigma)
#print(Vt)
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# reducing the matrix
def rank_k(K):
U_reduced= np.mat(U[:,:Kk])
Vt_reduced= np.mat(Vt[:k,:])
Sigma_reduced= np.eye(k)*Sigma[:k]
return U_reduced, Sigma_reduced, Vt_reduced,
U_reduced, Sigma_reduced, Vt_reduced= rank_k(4)
Y _hat = U_reduced * Sigma_reduced * Vt_reduced
#Predict a rating
Y _hat_matrix = pd.DataFrame(Y _hat).round(2)
#Reducing the matrix
def rank_k2(k):
U_reduced= np.mat(U[:,:Kk])
Vt_reduced = np.mat(Vt[:k,:])
Sigma_reduced = Sigma_reduced = np.eye(k)*Sigma[:k]
Sigma_sgrt = np.sqrt(Sigma_reduced)
return U_reduced*Sigma_sqrt, Sigma_sqrt*Vt_reduced
U_reduced, Vt_reduced = rank_k2(4)
Y _hat2 = U_reduced * Vt_reduced
def meta_parameter_train(self, ratings_df):
for k in [5, 10, 15, 20, 30, 40, 50, 75, 100]:
self.initialize_factors(ratings_df, k)
test_data, train_data = self.split_data(10, ratings_df)
columns = df.columns
ratings = train_data[columns].as_matrix()
test = test_data[columns].as_matrix()
self. MAX_ITERATIONS =100
iterations = 0
index_randomized = random.sample(range(0, len(ratings)),(len(ratings) - 1))
for factor in range(k):
factor_iteration =0
last_err=0
iteration_err = sys.maxsize
finished = False
while not finished:
train_mse = self.stocastic_gradient_descent(factor,index_randomized,ratings)
iterations += 1
finished = self.finished(factor_iteration,last_err,iteration_err)
last_err = iteration_err
factor_iteration +=1
test_mse = self.calculate_mse(test, factor)
def initialize_factors(self, ratings, k=25):
self.disease_name = set(ratings['disease_name'].values)
self.features = set(ratings['features'].values)
self.u_inx = {r: i for i, r in enumerate(self.disease_name)}
self.i_inx = {r: i for i, r in enumerate(self.features)}
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self.distance_factors = np.full((len(self.i_inx), k), 0.1)
self.disease_name_factors = np.full((len(self.u_inx), k), 0.1)
self.all_features_mean = self.calculate_all_features_mean(ratings)
self.disease_name_bias = defaultdict(lambda: 0)
self.distance_bias = defaultdict(lambda: 0)
def predict(self, disease_name, distance):
avg = self.all_features_mean
pg = np.dot(self.distance_factors[distance],self.disease_name_factors[disease_name].T)
b_ui = avg + self.disease_name_bias[disease_name] + self.distance_bias[distance]
prediction = b_ui + pq
if prediction > 10:
prediction = 10
elif prediction < 1:
prediction =1
return prediction
def train(self, ratings_df, k=20):
self.initialize_factors(ratings_df, k)
ratings = ratings_df[['disease_name_id', ‘features_id', 'rate’]].as_matrix()
index_randomized = random.sample(range(0, len(ratings)),(len(ratings) - 1))
for factor in range(k):
iterations = 0
last_ err=0
iteration_err = sys.maxsize
finished = False
while not finished:
start_time = datetime.now()
iteration_err = self.stocastic_gradient_descent(factor,index_randomized,ratings)
iterations += 1
finished = self.finished(iterations,last_err,iteration_err)
last_err = iteration_err
self.save(factor, finished)
def finished(self, iterations, last_err, current_err):
if iterations >= 100 or last_err < current_err:
print('Finish w iterations: {}, last_err: {}, current_err {}'.format(iterations, last_err, current_err))
return True
else:
self.iterations +=1
return False
def save(self):
print(“saving factors")
with open('disease_name_factors.json’, 'w') as outfile:
json.dump(self.disease_name_factors, outfile)
with open('distance_factors.json', 'w') as outfile:
json.dump(self.distance_factors, outfile)
with open('disease_name_bias.json’, 'w') as outfile:
json.dump(self.disease_name_bias, outfile)
with open('distance_bias.json’, 'w') as outfile:
json.dump(self.distance_bias, outfile)
def recommend_distance_by ratings(self, disease_name_id, active_disease_name_distance, num=6):
rated features = set(active_disease_name_distance.values('disease_name_id"))
disease_name = self.disease_name_factors.loc[disease_name_id]
scores = self.distance_factors.dot(disease_name)
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scores.sort_values(inplace=True, ascending=False)
result = scores[:num + len(rated_disease_name)]
recs = r[1] + self.disease_name_bias[disease_name_id] + self.distance_bias[r[0]]
sorted_distance sorted(recs.distance(),key=lambda distance:-
float(distance[1]['prediction’ ]))[ num]
return sorted_distance
show_type = input(
'‘Choose: 1: Input NoN-Zero Features From User, 2: Input Features From File, 3: Input all Features
From user ")
if show_type ==
how_many_number = int(input("How many non-zero Features do you have? "))
print("Enter two values for %d times: First is the Feature Index (from 1 to %d) and Second is the
Feature Value" % (
how_many_number, (len(df.columns))))
df.iloc[disease_name][1:len(df)] =0
for i in range(how_many_number):
index, df.iloc[disease_name][index] = [int(x) for x in input().split()]
recommend(df, int(disease_name))
if show_type =="2"
disease_name = input('Enter the Number of the disease: ")
recommend(df, int(disease_name))
#u, sigma, vt = linalg.svd(df)
if show_type ==
print("Enter %d Feature Values" % (len(df.columns)))
for i in range(len(df.columns)):
df.iloc[disease_name][i] = input()
recommend(df, int(disease_name))


https://mail.intjmi.com/article-1-1210-en.html
http://www.tcpdf.org

